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Reducing the Power Dissipation 

 The power dissipation can be minimized by 
 reducing: 
supply voltage 
load capacitance 
switching activity 

Reducing the supply voltage brings quadratic improvement. 
Reducing the load capacitance contributes to the 
improvement of both power dissipation and circuit speed. 
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Psw =   k CL V2
cc fCLK 

Reduce Switching Activity: 
• Conditional clock 
• Conditional precharge 
• Switching-off inactive 
blocks 
• Conditional execution 

Run it slower: 
• Use parallelism 
• Less pipeline 
stages 
• Use double-edge 
flip-flop 

Technology scaling: 
• The highest win 
• Thresholds should scale 
• Leakage starts to byte 
• Dynamic voltage scaling 

Reduce the active load: 
• Minimize the circuits 
• Use more efficient design 
• Charge recycling  
• More efficient layout 
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Disturbing Predictions for Power 

Integrated System 
Design 20 



11 

Integrated System 
Design 21 

Controlling VDD and VTH for low power 

Low power → Low VDD → Low speed → Low VTH → High leakage → VDD-VTH control	



Active Stand-by
Multiple V TH Dual-V TH MTCMOS
Variable V TH VTH hopping VTCMOS
Multiple V DD Dual-V DD Boosted gate MOS
Variable V DD VDD hopping

*) MTCMOS: Multi-Threshold CMOS 
*) VTCMOS: Variable Threshold CMOS 
• Multiple : spatial assignment 
• Variable : temporal assignment 

Software-hardware cooperation 

Technology-circuit cooperation 
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Dual-VTH concept 

Low-VTH circuit!
(High leakage)!

High-VTH circuit!
(Low leakage)!

Critical paths!

Non-critical paths!

(* from Prof. T. Sakurai) 
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Clustered Voltage Scaling for Multiple VDD’s 

Lower V DD  portion is shown as shaded 

CVS Structure Conventional Design 

Critical Path 

Level-Shifting F/F 
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M.Takahashi et al., “A 60mW MPEG4 Video Codec Using Clustered Voltage Scaling with
 Variable Supply-Voltage Scheme,” ISSCC, pp.36-37, Feb.1998. 

Once VL is applied to a logic gate, VL is applied to subsequent logic
 gates until F/F’s to eliminate DC current paths.  F/F’s restore VH. 
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Energy consumption is 
proportional to 
the square of VDD.  

VDD should be lowered 
to the minimum level 
which ensures 
the real-time operation. 
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VDD should be as low as possible 
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TransMeta Example 
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TransMeta Example 
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*Taken from Doug Laird’s presentation, January 19 th 2000 

TransMeta Example 
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TransMeta Example 
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Why is lowering VDD not enough ? 

•  Total P can be minimized by lower V 
–  lower V are a natural result of smaller feature sizes 

•  But… transistor speeds decrease dramatically 
as V is reduced to close to “threshold voltage” 
–  performance goals may not be met 
–  td = CV / k(V-Vt)α  where α is between 1-2  

•  Why not lower this “threshold voltage”? 
–  makes noise margin and Ileak worse! 

•  Need to do smarter voltage scaling! 
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Reducing the Supply Voltage: 
Architectural Approach 

•  Operate at reduced voltage at lower speed 
•  Use architecture optimization to compensate for 

slower operation 
–  e.g. concurrency, pipelining via compiler techniques 

•  Architecture bottlenecks limit voltage reduction 
–  degradation of speed-up 
–  interconnect overheads 

•  Similar idea for memory: slower and parallel 
Trade-off AREA for lower POWER 
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Example: Reference Datapath 

  Critical path delay: Tadder + Tcomparator = 25 ns 
  Frequency: fref = 40 MHz 
  Total switched capacitance = Cref 
  Vdd = Vref = 5V 
  Power for reference datapath = Pref = CrefVref

2fref 
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Parallel Datapath 

  The clock rate can be reduced by x2 with the same 
   throughput: fpar = fref/2 = 20 MHz 
  Total switched capacitance = Cpar = 2.15Cref 
  Vpar = Vref/1.7 
  Ppar = (2.15Cref)(Vref/1.7)2(fref /2) = 0.36Pref 
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Pipelined Datapath 

   fpipe = fref 
    Cpipe = 1.1Cref 
    Vpipe = Vref/1.7 
   Voltage can be dropped while maintaining the original 
    throughput 
   Ppipe = CpipeVpipe

2 fpipe = (1.1Cref)(Vref/1.7)2 fref = 0.37Pref 
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Datapath Architecture-Power Trade-off 
Summary 

Datapath
Architecture

Voltage Area Power

Original 5V 1 1
Pipelined 2.9V 1.3 0.37
Parallel 2.9V 3.4 0.34
Pipeline-
Parallel 2.0V 3.7 0.18
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Power = Energy/transition * transition rate 

= CL * Vdd
2 * f0→1

= CL * Vdd
2 * P0→1* f

= CEFF * Vdd
2 * f

Power Dissipation is Data Dependent
Function of Switching Activity

CEFF = Effective Capacitance = CL * P0→1

Power Dissipation Depends on Switching Activity ! 
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Example: Static 2 Input NOR Gate

Assume:
P(A=1) = 1/2
P(B=1) = 1/2

P(Out=1) = 1/4
P(0→1)

= 3/4 × 1/4 = 3/16

Then:

= P(Out=0).P(Out=1)

CEFF = 3/16 * CL
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Transition Probabilities for Basic Gates 

Integrated System 
Design 38 

Transition Probabilities for Basic Gates 


